

MANUAL

GraviMaster-FGB-M05 (S) Gravimetric Blender

Serial No. ISO 08.01.02.064.GB 986731 Rev. May 2001

Rev. May 2001

1.0 INTRODUCTION 2.0 **CONTROLS** 2.1 Blender startup 2.2 Blender status Machine-mode 2.3 2.4 Production-modes 2.5 Mixer-mode 2.6 Dispense modes 2.7 Batch handling Production control 2.7.1 2.7.2 Recipe to weight calculation 2.7.2.1 Method Standard 2.7.2.2 Method Percentage 2.7.3 Adding extra materials 2.7.4 Additive to regrind 2.7.5 Regrind control 2.7.5.1 Empty regrind Control 2.7.5.2 Stock Silo Control 2.7.6 Dispensing 2.7.7 Calculations 2.8 Datalogging 2.9 Certificates 3.0 **USER INTERFACE** 3.1 Operator-interface 3.1.1 Keyboard 3.1.2 User control 3.2 Recipes 3.2.1 Change components Add/change recipes 3.2.2 3.2.3 Change current recipe Timely information 3.3 3.3.1 Production screen 3.3.2 Material usage screen 3.3.3 Input & Output monitor 3.4 Adjustment of the gravimetric blender 3.4.1 Calibration of the weighbin Tare of the weighbin 3.4.2 3.4.3 Hardware-reactiontime

Overview of parameters

Public parameters

Protected parameters

Reports and overviews

3.5

3.5.1

3.5.2

3.6

Page 1

Rev. May 2001 GraviMaster-FGB-M05 (S) Gravimetric Blender 3.7 Settings of the user-interface 3.7.1 Change the rights of an operator Change entrycode 3.7.2 Change date and time 3.7.3 3.7.4 Revision code of the system 3.8 Menu hierarchy 4.0 **INSTALLATION** 4.1 Demanded connections 4.2 Attaching 5.0 **ALARMS** 5.1 Alarm reports and solutions 6.0 MAINTENANCE AND REPAIR 6.1 Maintenance 6.2 Replacement of parts Replacement of printed circuit 6.2.1 Cleaning the machine 6.3 6.4 Transportation of the GraviMaster 7.0 **TECHNICAL INFORMATION** 7.1 General machine specifications Safety measures 7.1.1 User-interface specifications 7.2 7.3 Valves specifications

Air pressure cylinders specifications

Electrical diagrams

7.4 7.5

L T	Labotek
	Power in Plastics

Page 2

1.0 INTRODUCTION

GRAVIMETRIC FEEDING

An efficient materials blending system is an essential feature of the modern plastics processing industry. Dosing each component on the basis of weight shows distinct advantages over traditional volumetric systems. The quantity of material delivered is precise and unaffected by variations in bulk density, flow characteristics and particle size.

Ferlin Plastics Automation now have a range of more than twenty blenders that deliver the benefits of gravimetric blending at a price that makes other gravimetric ... and most volumetric systems ... look distinctly expensive.

FGB SERIES GRAVIMETRIC BLENDERS

"GraviMaster" blending systems are available in more than twenty different models with a throughput capacity range from 10 to 750 kg/hr for the standard units. The number of components on the standard unit is two to six. But purpose-built units may designed for additional feeds up to a maximum of ten and a throughput capacity up to 1500 kg/hr. The blending units may either flow-control-valve design or have a combination with auger-feeders. The proven "GraviMaster" blending systems are being used successfully in Injection-moulding, Blow-moulding, Sheet-extrusion and Film-extrusion.

ACCURATE WEIGH SYSTEM

Each component is dispensed into a weigh-pan using one set of load cells. When all the components are correctly weighed, the blend is discharged into a mixing chamber. A high efficiency horizontal mixer is programmed to give a uniform blend which discharges to a storage bin with suction device, or directly into the processing machine hopper.

The system is capable of extremely accurate measurements of additive, even at very small percentages or ratios. Load cells of the highest accuracy are used, weighing to within 0.01 gm. The accuracy of the process is enhanced by the software system which is designed to compensate in a subsequent batch for any errors arising in a preceding batch. Overall accuracy of 0.1% can be achieved.

COMPACT AND MODULAR CONSTRUCTION

The units are designed and built as a modular construction using standard components where possible, so that all components are readily obtainable. All components which are in contact with the raw material are made in stainless steel. This includes hoppers, valves, augers, weigh pan, mixer and mixing chamber. When auger feeders are installed, these can be quickly accessed for easy cleaning. The mixing chamber and weigh pan can be removed easily for cleaning and access. The construction is in accordance with the essential requirements under the CE regulations.

Page 4

RELIABLE PROCESS CONTROL

The FGB control system incorporates the latest in computer and microprocessor technology for total automation of recipe entry and storage, inventory control and process monitoring. The control panel (user-interface) is provided with a micro-controller and industrial PC with LCD-display, functional keyboard, fiber optic communication cable (or RS-422) and parallel printer port.

Features are:

Rev. May 2001

- data storage of all plant raw materials.
- easy call up of materials for the formulation of recipes.
- fast identification of recipes and call up for machine operation.
- automatic regrind control within chosen limits, so that regrind generation is matched with usage.
- automatic additive to regrind control.
- a fixed weight of blended material can be produced according to any of the stored formulations.
- screen display of all process operation.
- reports of material used and batch histories can be printed on an optional printer regularly.
- storage facility for components and recipes.
- functions are menu driven and take the operator through the required sequence of actions with simple instructions.
- the software is pre-programmed with many options for the future, these are blenders you won't outgrow.

Options are:

- automatic stock silo control.
- extra level control of the blender hoppers.
- extra level control of the machine hopper.
- control and data for materials management systems.
- different language on the display.
- automatic loading of the hoppers can be provided separately with Ferlin loaders or others of your choice.
- several blenders may be linked to a central user-interface to give integrated inventory control over the whole process.

2.0 CONTROLS

When all components are available the dispense of a batch starts. The cycle begins with closing the weigh-pan. Then each of the requested components is dispensed and weighed in the weigh-pan. When all the components of the recipe are correctly weighed, the blend is discharged into the mixing-chamber. A horizontal mixer mixes the components to a uniform blend which discharges to a storage bin, or directly into the machine hopper.

2.1 Blender start-up

In this section is a short description of the normal start-up action of the blending system. More details of the controls are described in the following sections. An emergency stop can be made to shut-down the machine by pushing the button as indicated in drawing 1 in § 7.7.1.

Steps to follow for the start-up of the blending system:

- [1] Plug the communication cable into the user-interface and control box on the blender.
- [2] Connect air pressure to the blender and turn it on, **6 bar** is recommended.
- [3] Turn on the power. On the user-interface and control-box.
- [4] Select the right language. The selected language is indicated. Select a different language through key <↑> or <↓> and press <ENTER>.
- [5] If necessary adjust date and time.
- [6] Select the blender to be started.
- [7] Select on the interface the desired recipe from the menu (F1) *'controller / select recipe'*
- [8] Be sure there is no alarm active.
- [9] Start the blender, press <START>.

The blender will now operate automatically on the select recipe.

2.2 Blender status

The control of the blender is based on a number of status. Each status gives an exact description in which situation the controller is. The controller knows the following status:

Inactive

At the start-up of the blender several internal tests will be done automatically if the controller can't find a recipe. In this status the blender will not start until a recipe is edited.

Standby

The blender is complete in rest but can be started any moment by giving the start-command. In this status recipes, parameters and debug-commands can be sent to the controller.

Operating

The blender will now produce a blend for the selected recipe.

Rev. May 2001

Page 6

Pause

When the pause-command is given for a temporary stop the blender will stop after the cycle is complete.

Stop requested

The blender is operating but has received a stop-command. The stop-command will be executed at the end of a batch-cycle. This status will be replaced automatically with 'standby' if nothing is done. If a start-command is given during the status 'stop requested' the status will be 'operate' again.

Error

The controller has detected an error and therefore the system will stop. In a sub-menu at the operator-interface the error will be displayed. The error situation can be recovered using the <ENTER> command. The error must be solved then.

2.3 Machine-mode

The controller can be in two modes: Automatic and Manual. The operator can change the mode using the menu item 'controller'. This changing of mode is only possible while the blender has status 'standby'.

If a controller is in Automatic-mode, the recipe will be executed without the need of an operator. This mode is used for production purposes and is only dependent on the settings 'production-mode'.

In automatic mode the keys mentioned below mean:

- F5 Start-command (start-key)
- F6 Stop-command (stop-key)
- F7 Pause-command
- F8 Continue-command (clear pause)

After a start-command in Manual-mode one batch will be executed. After this the machine-status will be 'standby' again. The weighbin and mixbin-valve can be controlled manually.

In manual mode the keys mentioned below meaning:

- F5 Step-command (One component of a batch)
- F6 Reset-command (Back to the first component of a batch)
- F7 Empty weighbin
- F8 Empty mixbin

Page 7

2.4 Production-modes

Rev. May 2001

The production-mode of the blender indicates how the production will stop in automatic-mode. This parameter can be changed using the menu (F1) 'controller / public parameters'. The production-mode has three options:

Continue

The blender will not stop automatically after the start-command. The blender will continue the production, unless the blender runs out of material or an error occurs.

Weight->Alarm

If 'Weight->Alarm' has been chosen, a requested weight has to be given. After a start the requested weight will be compared with 'produced-weight'. If both are the same or the 'produced-weight' higher, the controller will send an alarm to the operator-interface. The production will continue.

The alarm can be recovered setting the 'production-weight' to zero (0). This command is part of the option-menu (F2) of the status screen.

Weight->Error

When using the option 'Weight->Error' a weight has to be given. After a start the requested weight will be compared with 'production-weight'. If both are the same or the 'production-weight' higher, the controller will send an error to the operator-interface. The production will not continue in this case.

2.5 Mixer-mode

When all components are dispensed, the contents of the weighbin will be emptied. The mixer in the mixing chamber, which contains the dispensed components, can be put in different modes. Choose the menu (F1) 'controller/public parameters'.

Normal

The mixer is off during production. If the components are dumped from the weighbin into the mixer chamber the mixer will be on for a predefined number of seconds, defined by 'mixerOnTime'. This parameter can only be changed if this option is chosen.

Pulsing

The mixer will pulse during production. Both on- and off-time ca be defined using the parameters mixerPulseOnTime (time on) and mixerPulseOffTime (time off). These parameters can only be changed if this option is chosen.

Off

The mixer is always off.

On

The mixer is always on, when the machine status is active.

Page 8

2.6 Dispense modes

Rev. May 2001

The blender has two ways of dispensing: gravimetric and volumetric. One mode can be selected or a combination of both. This can be defined choosing menu (F1) 'controller / public parameters'.

Gravimetric

All component of the batch are dispensed and measured separately. Gravimetric is more accurate than volumetric, but takes more production time, ie., lower output.

Volumetric

All components of the batch are dispensed at the same time using the dispense time of each component (calculated by the system). The components are dumped directly in the mixer chamber. No measurement is done in this mode. Therefore this method is less accurate, but the production time is faster, ie., maximum output

Combination

When combination is defined, one gravimetric will be followed by a defined number of volumetric dispenses. This is defined by the parameter combinationRatio. This parameter can only be defined if 'combination' is chosen. This mode has the best of gravimetric and volumetric.

Use: normally the defined combination will be done (ex. 1:3). However, if the mixer chamber is full, the process will automatically do a gravimetric dispense instead of a (possible) volumetric one.

2.7 Batch handling

2.7.1 Production control

If a start command is given the controller will check if the blender actually can start. If a hopper has a low-indication (**optional**) the controller will alarm.

Also the parameters are checked. These can be in conflict with the recipe to be executed. The following items will be checked (if applicable):

- * Empty Regrind control
 - The controlled hopper must contain regrind (according to recipe)
- * Stock silo control (optional)
 - Controlled hopper must contain regrind (according to recipe)
- * Additive to regrind
 - Controlled hopper must contain additive (according to recipe)

The blender will not start unless all conditions are met. A message will be sent to the user interface.

2.7.2 Recipe to weight calculation

After a start-command the controller will calculate the requested weights of all components of the selected recipe.

A recipe can be defined in two ways: 'Standard' and 'Percentage'. These methods can be defined in the recipe choosing menu (F1) 'recipes / edit recipes'. The methods 'Standard' end 'Percentage' define the relation of the components (Regrind, Natural and Additive) in a recipe.

2.7.2.1 Method Standard

The different components are defined as follows:

Regrind Percentage of the batch weight Natural Relation between other naturals

Additive Percentage of the totals of all naturals

Example

Batchweight	2000.0 gr
Regrind	20.0%
Natural 1	4
Natural 2	1
Additive	5.0%

Regrind 20.0% of 2000.0 gr. 400.0

Naturals naturals + additive = 80.0%

naturals + (0.05 * naturals) = 80.0%

naturals = 80.0/1.05 = 76.2%

natural 1 = 4/5 * 76.2 = 61.0%1220.0 natural 2 = 1/5 * 76.2 = 15.2%304.0

Additive 76.0 80.0 - 61.0 - 15.2 = 3.8%

TOTAL 2000.0

2.7.2.2 Method Percentage

The different component are defined as follows:

Regrind : Percentage of the batch weight
Natural : Percentage of the batch weight
Additive : Percentage of the batch weight

Total sum must be 100%.

Example

Batchweight	2000 gr.
Regrind	20.0%
Natural 1	60.0%
Natural 2	15.0%
Additive	5.0%

			ΤΟΤΔΙ	2000.0
Additive	:	5.0% of 2000.0		100.0
Natural 2	:	15.0% of 2000.0		300.0
Natural 1	:	60.0% of 2000.0		1200.0
Regrind	:	20.0% of 2000.0		400.0

2.7.3 Adding extra materials

The defined amount of the component defined in the recipes can be changed external using some special parameters. The controller has two methods: 'Additive to regrind' and 'Regrind Control'.

IMPORTANT

Addition of extra material using 'Additive to regrind' and 'Regrind Control' is only possible when a 'standard' recipe is used.

Page 11

2.7.4 Additive to regrind

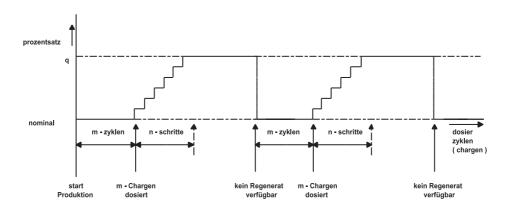
Rev. May 2001

It is possible to dispense more additive in relation to the amount of regrind. Choose for this definition menu (F1) 'controller / public parameters'. A maximum of two hoppers (additive) can be defined (additiveToRegrindHopper). The definition must be completed defining the requested percentage (additiveToRegrindPerc).

ADDITIVE TO REGRIND				
	Not activated	I	Activated with 2.0%	, 0
Component	Recipe	Weight (g)	Recipe	Weight (g)
Regrind	20.0%	400.0	20.0%	400.0
Natural 1	4	1219.0	4	1213.0
Natural 2	1	304.8	1	303.2
Additive	5.0%	76.2	5.0% + 2.0%	83.8

2.7.5 Regrind control

The flow of 'regrind' is very often not continuous due to the process. There are two methods to adjust the amount of regrind to the actual process: 'Empty Regrind' or 'Stock Silo'.

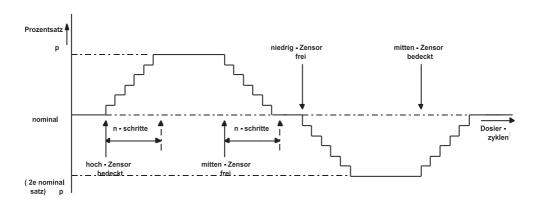

2.7.5.1 Empty regrind Control

Empty regrind control means: keep the regrind-hopper empty. The material must be dispensed, because otherwise another parts of the process can be destroyed (regrind return mechanism).

Through menu (F1) 'controller / protected parameters' the process can be activated. After the process is started a defined amount of batches (Empty regrind wait count) must be awaited before the percentage will be increased. The percentage will be increased in the defined number of steps (Dispensevariation cycl.) until the requested percentage is reached (Dispense increase).

If not enough material can be dispensed from the regrind hopper, then regrind will be reset to the original setting (recipe).

Page 12



2.7.5.2 Stock Silo Control

A regrind silo can have (optional) three sensors to detect high- low- and middle. If the controller has these sensors, 'Stock-Silo' regrind control can be activated, choosing menu (F1) 'controller / protected parameters'.

If the high-sensor is true, the silo is almost full. Therefore more regrind will be dispensed. This is the same as described in 'empty regrind control'. This will be done until the middle sensor is not true anymore. In a defined number of steps the process will dispense the original setting of the recipe.

If the low-sensor is true, the silo is almost empty. Therefore less regrind will be dispensed. This is the inverse as described in 'empty regrind control'. This will be done until the middle sensor will become true. In a defined number of steps the process will dispense the original setting of the recipe.

2.7.6 Dispensing

Dispensing of the different components will start after the calculation of the related weights. The components are dispensed in the order as defined in the recipe (gravimetric only). In volumetric mode all components are dispensed at the same time.

Every mechanical valve has a reaction time. The controller uses the 'Hardware Reaction Time' to calculate the time which the dispense valve must be activated. The 'Hardware Reaction Time' is the maximum active time of the valve when no material is dispensed. The controller uses a pulse of 5ms in the following algorithm:

OpenTime = Weight [g] / dipenseSpeed [g/s]

OpenPulses = (OpenTime [s] / 0.005 [s]) + HardwareReactionTime [Puls]

After every dispense cycle the weight is measured. The weight bin must be stable before the weight can be measured, therefore a time delay is inserted between dispense and measuring. When the controller starts measuring the signal must be stable for at least 1 sec. (signal within the 'Weighbin-variationband')

After measuring the weight of the first dispense some calculations can be done, and with the results parameters can be changed. Result is a more accurate next dispense. After the first dispense of a material one of the following situation occurs:

Dispense is correct

The difference between calculated- and measured weight is less then the dispense accuracy. In this case extra dispense tries of this material are not necessary.

Dispense not correct (too little)

The difference between calculated- and measured weight is more than the dispense accuracy but there is less dispensed (measured) than calculated. In this case the controller reacts according to the chosen 'alarm-type'. The following 'alarm-types' are possible:

IGNORE No extra dispense-tries. Relations within the recipe will corrected by re-calculations.

WARNING The controller tries to reach the dispense-accuracy by extra dispenses. The extra dispenses are limited by the parameter 'dispenseTry'. When after a maximum number of dispense tries, the accuracy is not reached the controller sends a warning only to the user (= The controller continues with the next material).

ERROR The reaction of the controller is equal to 'WARNING' only an error is sent to the user when the accuracy is not reached. Now the controller waits for a confirmation (enter) to initiate new dispense tries of the same material. This process goes on until the dispense accuracy is reached.

Page 14

Dispense not correct (too much)

Rev. May 2001

To much material has been dispensed so there is nothing the controller can do. Of course the relations within the recipe will corrected by re-calculations.

After the first dispense try in all of the above mentioned cases a new dispense rate will be calculated. If the measured dispenserate (measured weight / dispense time) differs from the used dispenserate a correction can be made. A correction is only made if the difference between the measured- and used dipenserate is less then the boundary (dispenseRateVarBand). This method prevents the controller calculating incorrect values e.g. if a hopper runs out of material. The new dispenserate is calculated by the next algorithm:

dispenseRate = ((4 * dispenseRate) + (measuredWeight/dispenseTime))/5

When all components of a recipe are dispensed the contents of the weighbin is dumped in to the mixer chamber. The weighbin dumps the material by opening a valve for a given time. This time (weighbinDumpTime) is a parameter which can be changed. It is also possible to start the mixer at this time (see mixer-mode). There are two conditions for opening the weighbin valve:

Condition 1. The mixbin-vale may not be open (if present)

Dispensed material must be mixed first before it can be used. Therefore the mixbin-valve and weighbin-valve may not be open at the same time.

Condition 2. The mixerchamber may not be full

If the input-device indicates a full mixerchamber no material may be dumped into it (it is full)

2.7.7 Calculations

In order to be able to dispense with high accuracy, the actual measured weights will be used to recalculate the requested weight of the next component. The dispense will be optimised if possible in order to guarantee a good batch (good relation).

IMPORTANT

Best dispense order is:

Regrind, Natural, Additive

Page 15

2.8 Datalogging

Rev. May 2001

Some production data is stored. This is shown at the user interface and can also be printed.

- * Batch data
 - measured weight (each component)
 - dispenserate of each component
 - recalculation to recipe
- * Total data
 - Sum of batch data
- * Material usage
 - dispensed amount of each hopper
 - percentages

The controller saves all data in battery-backup memory.

2.9 EQ-Net Certificate

THE EUROPEAN NETWORK FOR QUALITY SYSTEM ASSESSMENT AND CERTIFICATION

This is to state that

Labotek A/S
Strøbjergvej 29, P.O.Box 100
DK-3600 Frederikssund

Labotek A/S

Dageløkkevej 4, DK-5953 Tranekær

holds the Quality System Certificate

DS-CERTIFICATE NO. 162

Issued 1993-02-16

for the standard from the ISO 9000 / EN 29000 series, and the scope as specified therein

Signed for and on behalf of EQNet member

DATE April 1993

B. Carlle Bjarne Axelsen
Certification Manager

EQNet members are:

AENOR Spain AFAQ France AlB-Vinçotte Belgium BSI QA United Kingdom
CISQ Italy DS Denmark DQS Germany ELOT Greece IPQ Portugal KEMA Netherlands
NCS Norway NSAI Ireland ÖQS Austria SFS Finland SIS Sweden SQS Switzerland

Rev. May 2001

Page 17

2.10 **ISO Certificat**

DANSK STANDARD

Kvalitetsstyringssystem Certifikat Quality System Certificate

Certifikat nr. 162.1 Certificate No. 162.1

Det attesteres hermed, at kvalitetsstyringssystemet hos

This is to certify that the Quality System of

Labotek A/S Strøbjergvej 29, P.O.Box 100 DK-3600 Frederikssund

Labotek A/S Dageløkkevej 4, DK-5953 Tranekær

> er i overensstemmelse med kravene i fulfils the requirements in

DS/EN ISO 9001:1994

Certifikatets gyldighedsområde er: The scope of this certificate is.

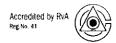
Periferiudstyr til plastindustrien.

Ancillary Equipment for The Plastics Industry.

Dette certifikat er udstedt i overensstemmelse med DS' bestemmelser vedrørende certificering af kvalitetastyringssystemer. Certifikatets danske tekst betregtes som den juridiak geeldende i tilfædde af tvivl om oversættelsens korrekthed. Certifikatet er gyldigt 1 år efter udstedelse eller 1 år efter sidste opfelgningsaudit gennemfært med tilfæddsstillende resultat, og affremt dokumentation herfor fremgår af bilag A til dette certifikat. Ihis certificate is granted in conformity with the DS rules for the Certification of Quality Systems. The Danish certificate text af the certificate is considered legally binding in case of doubt with regard to the conectness of the translation. The certificate is valid for one year from the date of issue, or for one year from the latest surveillance audit carried out with a satisfactory result and only if attestation to this effect appears from Annex A of this certificate.

Mak Kih Mark Krølner

Ledende auditor, sagsverifikator Lead auditor, Veriliei


1996-01-19 Revisionsdate Date of revision

1993-02-16

Litura gurd Steen Djursgård

Page 18

Power in Plastics

3.0 USER INTERFACE

3.1 Operator-interface

3.1.1 Keyboard

Description:

- F1 Open main menu. All other sub-menu's can be selected
- F2 Open option menu. The contents is dependent of the actual screen.
- F3 Will be used during calculation
- F4 Choose node number

The function keys F5 up to F8 is dependent of the machine mode (automatic, manual).

FUNCTION KEY IN MACHINE-MODE			
Function key Automatic Manual			
F5	Start production	Dispense one component	
F6	Stop production	Mixer	
F7	Pause	Dump weightbin	
F8	Start after pause	Dump mixer chamber	

Page 19

Besides the function key there are some special keys:

DIRECT MACHINE-CONTROL KEYS		
Key	Description	
# or F4	Select FGB	
START	Start command, the same as F5	
STOP	Stop command, the same as F6	

DATA ENTRY KEYS		
Key	Description	
0-9	Entry of numbers	
+/-	Increase and decrease function (value of field can be changed by step)	
ENTER	Select function. (choise is made and entered values are saved)	
	Decimal point	
ESC	Escape, Leave menu without choice	
(Home)	(Arrow up with line) Jump to first element of row	
(End)	(Arrow down with line) Jump to last element of row	
INS	Insert function to add recipes and components	
DELL	Delete function to delete recipes and components	
←	Backspace (above DELL-key) delete the character left of the cursor	
$\leftarrow\!\uparrow\!\rightarrow\downarrow$	Cursor-keys, move cursor and menu-items	

Rev. May 2001 Page 20

3.1.2 User control

The user-interface consists of several screens which can be selected by a menu. A screen consists of objects only one object in a screen is active (selected). By using the \downarrow en \uparrow arrow keys the actual selected object can be changed. Pressing <ENTER> activates the selected object.

Button

After activating the button a command (or set of commands) is (are) executed. The name of the button represents the functionality of the button.

Number input field

When a number input field is selected it can be activated by either the <ENTER> key or just typing the numbers. The activated input field shows a cursor at the position where the next number will be placed. To deactivate (leave) the input field use one of the the following keys $\langle ENTER \rangle$, $\langle ESC \rangle$, \downarrow or \uparrow

Text input field

The text input field is equal to a number input field but it also accepts characters. Because the keyboard doesn't have character-keys a special method is implemented to enter characters.

To enter a character in a text inputield first activate the object with the <ENTER> key. When the input field is activated a cursor is shown at the first position. At this moment it possible to select a character with the <+> and <-> keys. After a character is chosen the next position can be selected with the \rightarrow arrow key.

Option field

Option fields are objects with a toggle function (yes/no) or (true/false). When the button according to the option field is activated the value is toggled. The actual value of the option field is displayed by a cross. When the cross is visible the object has the value 'yes' or 'true' otherwise the value is 'no' or 'false'.

Optionlist

Optionlist fields are fields that can contain a limited set of values. The optional values become visible as the object is activated. Now the required value can be selected by using the \uparrow and \downarrow key and select it with $\langle ENTER \rangle$.

3.2 **Recipes**

Recipes constitute the core of the controller. They contain all information about the material to be produced. By the menu (F1) 'recipes / edit recipes' it is possible to add recipes to the controller. One recipe consists of one or more (max 12) components which can be changed independently.

Page 21

3.2.1 Change components

There is a components list available in the controller. The list can be used by the operator to define recipes. The components list stores the name and type of a component and is maximised to 100 components. The operator is free to chose a name for a component. There are only three options namely:

Regrind Scrap-material Natural Basic-material

Additive Additive-material (e.g. masterbatch)

One component of every type is already present in the list. These components have the name 'no name' and can not be deleted from the list.

To add or modify components chose the menu (F1) 'recipes / edit components'. The next screen will be displayed:

[0]OPERATING AUTO[] [] []
STATN:[0] FGB#00: (No name) STATUS OPERATING

MODE: AUTOMATIC

----- [Edit components]

Name Type

SCR GARDEN CHAIR REGRIND ADEG-2RN NATURAL ADEG-4RN NATURAL ANTISTATIC ALU ADDITIVE

> <ENTER> = edit component <INSERT> = insert component <DELETE> = delete component

F1Menu F2Option F3 F4Clear F5Start F6Stop F7Pauze

F8Cont.

Page 22

In the screen it is possible to select a component with the arrow keys. After a component has been activated by <ENTER> the name and type can be changed. If the field type has been activated an option list will appear. One of the options (Regrind, Natural or Additive) must be chosen.

By pressing the <INS> insert-button a new component will be added to the list. The controller places a standard name and type into the fields. The operator now can change these fields to the correct name and type.

Deleting a component from the list can be done by pressing the delete-key. The component pointed to by the highlighted line will be deleted from the list.

The option-key (F2) contains two functions in the screen 'edit components': print components and search components, activate one of them by selecting and push <ENTER>.

Example: Add a new component

Goal: Component with he name "WHITE" and type "ADDITIVE"

Actions:

Rev. May 2001

Step: Menu (F1) 'recipes' <ENTER>

Step: 'edit components' <ENTER> (By using the arrow-keys)

Name Type

Step: Press <INS> key (INS = insert)

Name Type < > [NATURAL]

Step: Search for the character W by using the + or - key:

- <+> Starts with special characters and numbers then the alphabet
- <-> Starts at the end of the alphabet

When the + or - key is hold down the character will change fast.

Page 23

If the character W has been found the ? key is pressed.

<w> ? [NATURAL]</w>

Step: Repeat the same procedure for the character H, I, T and E. When the whole name is given press <ENTER>. Now the name 'WHITE" is stored.

Step: Press the ? key again to select the type-field.

Name	Type NATURAL	9	
[WHITE]	NATURAL	?	

Step: Press <ENTER> to activate the field.

Name	Type	
[WHITE]	[NATURAL]
	REGRIND	
	NATURAL	
	ADDITIVE	

Step: Select ADDITIVE by using the arrow keys and confirm by pressing <ENTER>.

'	Name [WHITE]	Type ?ADDITIVE	?
	[WIHIE]	ADDITIVE	4

Step: To confirm the new component press the arrow key? or use the <ESC> key.

Now the "ADDITIVE" component "WHITE" is added to the list. The maximum number of components is 100.

Page 24

3.2.2 Add/change recipes

The terminal has the capacity for 340 recipes. This space is divided into 4 spices so every connected FGB can contain 85 recipes. If the menu item (F1) 'recipes / edit recipes' is chosen a list with recipes will be displayed.

Now recipes can be added, changed or deleted. The -key deletes the current recipe of course there will be a conformation for the operator. By adding <INS>-key or changing <ENTER> the current recipe the same screen is used.

```
[0]OPERATING AUTO[]
                              []
                                        []
STATN:[0] FGB#00: (No name)
                             STATUS OPERATING
                                                   MODE: AUTOMATIC
+----EDIT RECIPE
                   [ 10]
Number
                   CRATE
Name
Colour
                   [YELLOW
                                  1
Batch
                   [ 2]Kg.
                   [STANDARD]
Interpretation:
H# Component
                    Quant
                                 Alarm
                                               Rate (g/s)
 1 noname
               (r) 50.0
                                 IGNORE
                                               957.2
 2 noname
               (n) 2.0
                                 IGNORE
                                               891.4
 3 noname
               (n) 2.0
                                 IGNORE
                                               875.5
 5 noname
                                                 8.3
               (a) 4.0
                                 IGNORE
 4
                                 <ENTER> = edit line
 5
                                               <INSERT> = insert line
 6
                                               <DELETE> = delete line
 7
                                               <HOME> = sort up
 8
                                 <END>
                                           = sort down
 9
10
11
12
F1Menu F2Option
                   F3
                        F4Clear F5Start F6Stop F7Pauze
F8Cont.
```

All fields of the recipe are visible in the screen. By selecting the objects with the arrow-keys and activate them with the <ENTER>-key it is possible the change the them. Below a list is given with every field of the recipe giving some extra information about the field.

	FIELD OF A RECIPE	
Fields	Description	
Number	Unique recipe number	
Name	Recipe name	
Colour	Characterfield for the colour-name	
Batch	Total batchweight	
Interpretation	Recipe calculation	
Component	Link hopper to component	

The screen can be left by pressing the <ESC>-key. Now the terminal checks the recipe and if it is correct it will be stored. If the recipe is not correct the operator can chose either changing the recipe or discard all changes.

The option-key (F2) contains other functions in the screen 'edit recipes'. The next functions are available:

	OPTION MENU IN EDIT-RECIPE
Option	Description
Copy recipe	Copies the recipe to the same or other terminal.
Find number	Searches for the recipe with the given number.
Find colour	Searches for the recipe with the given colour.
Find name Print recipe	Searches for the recipe with the given name. Sends the current recipe to the printer.
Print all recipes	Prints all recipes of the actual controller.

Example: Add a new recipe

Goal: Add a 2 kg standard recipe.

Remark: The required component names should have been added.

Page 26

Actions:

Step: Menu (F1) 'recipes' <ENTER>

Step: 'edit recipes' <ENTER>

Name Nr. Colour

Step: Press the <INS> key (INS = insert)

Number: [1] Name: ?

Colour: []

Batch: [2.0] kg

Interpretation: [STANDARD]

H# Component Quantity. Alarm Speed (g/s) 1 2 : : 10 11 12

The name and colour of the recipe is entered in the same way as the components name (§ 3.2.1).

Step: Press the arrow key $\langle \downarrow \rangle$ to select the batch.

Batch: < 2.0> kg

When the batchweight must be changed it can be done by the use of the numeric-keys

IMPORTANT Never enter a batchweight higher then the standard value.

.

Page 27

Step: Press the arrow-key $\langle \downarrow \rangle$ once

Interpretation: < STANDARD>

Step: When the interpretation must be changed into PERCENTAGE press the <ENTER> key. Now select PERCENTAGE with the arrow keys and confirm with <ENTER>.

Interpretation: STANDARD PERCENTAGE

Step: Press the arrow key $\langle \downarrow \rangle$ once.

H# Component QTY Alarm Speed (g/s)

1
2
:
12

Step: Select the hopper you want to edit with the arrow-keys and press <ENTER> to activate.

H# Component	Quantity	Alarm Speed (g/s)	
1			
2			
:			
12			

Step: Press <ENTER>.

Name Noname Noname Noname	Type REGRIND NATURAL ADDITIVE
WHITE	ADDITIVE

Page 28

Step: Use the arrow-keys <↓> to select a component and press <ENTER>.

Use the arrow-key <?> to select Quantity. Enter the quantity and press <ENTER>.

Use the arrow-key <→> to select Alarmtype and press <ENTER>.

Alarm
Ignore
Ignore
Warning
Error

Step: Select an alarm type by using the arrow-keys and press <ENTER>.

It is not necessary to enter a speed (g/s) because the terminal already has entered standard values and the GraviMaster calculates new speeds and updates the recipe.

Step: Press the arrow-key <0> to select the next hopper number.

Depending on the model, it is possible to use upto 12 hoppers.

The terminal has a keyboard but the keyboard doesn't contain characters. Therefore it is possible to connect a standard AT keyboard to the terminal. This keyboard must connect to a connector which is placed on the PCB in the terminal. When using a AT keyboard, than:

- Switch power off the terminal
- Disconnect the internal keypath from the PC board
- Connect the AT keyboard on the PC board
- Switch on the terminal

Now you can use the AT-keyboard. When you are ready, than connect the terminal-keyboard again. This has to be done when the terminal is switched off.

3.2.3 Change current recipe

When an operator wishes to produce a new product a change of the current recipe must be done. To change the current recipe select menu (F1) 'controller / select recipe'. The terminal now shows a list with all recipes. The recipe which is marked with an $<\downarrow>$ is the actual recipe, this recipe is also loaded in the controller.

IMPORTANT

When a new recipe is selected be sure that all hoppers are filled with material. The controller calculates new dispense-rates by a fast algorithm in the first 5 batches.

3.3 Timely information

It is possible to get an over view of one of the connected controllers. Therefore three screens are available on the terminal: production-screen, material usage-screen and input/output-screen.

3.3.1 Production screen

The production-screen can be reached by selecting menu (F1) 'production / production status'. The production-screen displays information about the current controller. The information on the screen is updated every 0.3 sec.

OPERATING STATUS:[0] F	GB#00: (No name) PRODUCTI	[] STATUS OPERATING ON STATUS]	MODE: AUTON	MATIC
CONTINUE	Dis	spense mode: GRAVIMETR	IC	
Name:	PIR-HOUSI		:	PULSE
Recipe	CRATES	YELLOW		
	[current]	[previous]		[total]
Н# Туре	Recipe Requested	Dispensed Recipe	Dispensed Re	ecipe Dispensed
1 REG	[20.0] 400.0	20.0	400.0	20.0 1600
2 NAT	[1.0] 1523.8	1.0	1523.8	1.0 6095
3 ADD	[5.0] 76.2	5.0	76.2	5.0 305
4				
5				
6				
7				
8				
9				
10				
11				
12				
totals				
[ACCEPT]	[UNDO CHANGES] Produced weigh		8000	
F1Menu F8Cont.	F2Option F3	F4Node F5Start	F6Stop	F7Pauze

During production it is possible to change the recipe without a change of the current recipe. The recipe can be changed in the production-screen by selecting a field (arrow-keys). Next enter a new value and press <ENTER> to confirm. Now the recipe is changed but the controller uses the new values at the start of a new batch.

3.3.2 Material usage screen

The material usage screen menu (F1) 'production / material usage' displays the total quantity of material witch is used ordered by hopper number. The quantities which are stored doesn't depend on the current recipe. The material usage screen is erased from memory by one of the following actions:

- * Command given by the operator
- * After a operator prints the screen.

This is possible by using option-key (F2) and selecting the option you require and pressing <ENTER>.

Other values witch are stored in the material usage screen are: date of the last erase-action, number of batch-cycles and production speed (kg/hour).

Page 31

3.3.3 Input & Output monitor

Rev. May 2001

The input & Output screen menu (F1) 'controller / digital I/O monitor' displays all digital input and output lines. Every object in the screen can be selected by using the arrow-keys. When a output line is selected and <ENTER> is given the digital output will toggle. The operator has control of the digital outputs when the controller is in 'manual mode'.

3.4 Adjustment of the gravimetric blender

The controller has some system-parameters. These parameters must be entered during the installation of the GraviMaster. The controller uses these parameters to read the weigh bin signal correctly, to open the weigh bin-valve, control the dispense-valves or motors etc.

3.4.1 Calibration of the weigh bin

The controller uses two known (entered) calibration-points to calculate a weighline. The controller uses this line to find a weight by every input-signal. The two calibration-points must be entered by the operator by the menu (F1) 'controller / calibration / loadcell'.

The calibration-procedure of the loadcell has two steps. Extra information is given to the operator by every step. This information is displayed at the top of the screen. First be sure that the weighbin is empty and press (F3). The weight of the empty weighbin is measured and stored by the controller. Next step is to fill the weighbin with a reference-weight and be sure that the input field on the terminal has the same value. Now press (F3) again and the second calibration-point is measured and stored. The calibration-procedure is now ready.

IMPORTANT

The second calibration-point must be greater then the first one.

3.4.2 Tare of the weighbin

Due to temperature, age, overload etc. it is possible that the weighline of the controller 'moves'. When the line has moved a zero-weight will be displayed that isn't zero. To move the weightline back it is possible to start a new calibration procedure. But the calibration-procedure takes a lot of time and the weightline is correct (it only moved). The tare-function moves the line back to its zero-point. To start the tare function enter menu (F1) 'controller / calibration / loadcell-tarration'.

Page 32

3.4.3 Hardware-reactiontime

Rev. May 2001

The adjustment of the number of pulses is very important for the autopulse system of the FGB-M05. When dosing less than 8 gram of material, the GraviMaster will switch over to the autopulse system. In the hardware-reaction time the opening time can be adjusted by increasing the clockpulses. One clockpulse is 5 ms (0,005 s).

The autopulse system does not caculate the rate in g/s but in g/puls. It calculates how many pulses he needs for an amount of material. This is why it is very important that the opening time of the pulse is not too long, because it cannot dose accurate anymore.

Standard adjustment:			
Hopper	Clockpulses	Time (s)	
1	3	0,015	
2	4	0,020	
3	4	0,020	
4	3	0,015	

3.5 Overview of parameters

The controller has a great number of parameters. The parameters are necessary to control the machine with all its features. The parameters are broken down into two groups; public-parameters and protected-parameters. Free parameters may be changed by an operator, protected parameters may only be changed if the password is given.

3.5.1 Public parameters

Below a list is given of all parameters which are attainable by the menu (F1) 'controller / public parameters'.

Page 33

PUBLIC PARAMETERS				
Parameter	Description	Init		
AlarmReport	Indicates if alarm-reports must be printed.	No *)		
ProductionReport	Indicates if production-reports must be printed. If so the parameter interval-time must be given also.	No *)		
Interval	Pauze (time) before printing the next production-report.	01:00.00		
BatchReport	Indicates if batch-reports must be printed.	No *)		
ProductionMode	Actual production-mode. There are three possible modes; CONTINUE, WEIGHT and ALARM_WEIGHT. If the mode WEIGHT os ALARM_WEIGHT has been selected the parameter production Weight must also be given.	CONTINUE		
ProductionWeight	The FGB stops his production when the production Weight is reached. (productionMode must be WEIGHT or ALARM_WEIGHT).	100 [Kg]		
DispenseMode	Actual dispense-mode. There are three possible modes; GRAVIMETRIC, VOLUMETRIC and COMBINATION. If the mode COMBINATION is chosen the parameter combinationRatio must be given.	GRAVIMETRIC		
CombinationRatio	Relation between the volumetric and gravimetric dispenses. (one gravimetric dispense and x volumetric dispenses).	3		
MixMode	Actual mixermode. There are four possible modes; ON, OFF, NORMAL and PULSE. In normal-mode the parameter mixerOnTime must be given. In the mode pulse the parameters mixerPulseOnTime and mixerPulseOffTime must be given.	PULSE		
MixerOnTime	Time the mixer is activated after the material is dumped out of the weighbin.	10 [s]		
MixerPulseOnTime	Time the mixer is activated in pulse-mode.	5 [s]		
MixerPulseOffTime	Time the mixer is not activated in pulse-mode.	15 [s]		
AdditiveToRegrind Percentage 1/2	Percentage additive to regrind which must be added.	0 [%]		
AdditiveToRegrind Hopper 1/2	Hoppernumber in which the additive is.	Hopper 5		
WeighbinDumpTime	Time the weighbinvalve is activated (dumping of material into the mixerchamber).	4 [s] 0,5 kg unit 6 [s] 1,2,5 and 25 kg unit		
LevelControlWaitTime	Time between the full signal of the mixerchamber sensor and opening the mixerchamber-valve.	8 [s]		
LevelControlDumpTime	Time between the free signal of the mixerchamber sensor and closing the mixerchamber-valve.	1 [s]		

Page 34

For example if the alarm report must be activated. First select the option field by using the up- and down-keys. Now press <ENTER> to activate the option field. If the option field displays a [X] the alarm report is activated. The parameters must be updated into the controller, so select the OK button and activate it by pressing <ENTER>. Updating the parameters into the controller must be done for every parameter.

3.5.2 Protected parameters

Rev. May 2001

Below a list is given of all parameters with are attainable by the menu (F1) 'controller / protected parameters'.

Rev. May 2001

PROTECTED PARAMETERS				
Parameter	Description	Init		
BatchWeight	Total weight of one batch. This value is copied into every recipe when it is created.	0,5 [kg]		
DispenseTry	Maximum number of tries per component to reach maximum accuracy	4		
DispenseAccuracy	Minimum accuracy for each component.	25 [%]		
DispenseRate	Maximum deviation when a re-calculation of the	30 [%]		
CorrectionBand	dispense-speed is done			
SiloPresent	Indicates the 'Stock-Silo' regrind control process is activated.	No		
MaximumTare	Maximum absolute deviation from the zeropoint	40 [g]		
Variation	of the weighbin.			
SiloHighCount	Number of batches with the highness activated before the controller initiates an alarm.	100		
SiloLowCount	Number of batches with the lowsensor not activated before the controller initiates an alarm.	100		
EmptyRegrind	Indicates the 'Empty Regrind' regrind control process is activated.	No		
EmptyRegrindHopper	Indicates the hopper which is used in the empty regrind process	Hopper 1		
EmptyRegrindCycles	Number of batches empty regrind waits before increasing regrind (startprocess)	1		
Dispense inc/dec	Maximum percentage for the regrind control processes	10 [%]		
Dispense	Number of steps in whitch the maximum must	10		
VariationCycles	be reached.			
LoadcellGain	Amplification-factor for the loadcell signal	16		
LoadcellOverload	Maximum weight in the weighbin. The controller initiates an error on this point.	800 [g]		
LoadcellSettleTime	Time between the dispense of the last component and reading the weighin-signal. (to eliminate vibrations).	1 [s]		
LoadcellWeight BandWidth	To read a correct weight 8 samples must fit to this absolute band.	10 [g]		
FGB-Name/Nr.	Name of the controller; This name is used in the user-interface of the terminal.			

Page 35

3.6 Reports and overviews

There is the possibility of printing several reports and overviews. Underneath a list is made with the reports and overviews with behind them the section and page where instructions for printing are given.

* batch report	§ 3.5.1
* production report	§ 3.5.1
* material usage report	§ 3.3.2
* error report	§ 3.5.1
* recipe overview	§ 3.2.2
* component overview	§ 3.2.1
* alarm overview	§ 5.1

3.7 Settings of the user-interface

3.7.1 Change the rights of an operator

The terminal has some area's which are protected by a password; protected-parameters, debugmonitor etc. Before an operator can use, modify or see these area's he has to perform a login procedure. This procedure starts by choosing menu (F1) 'system / login' the controllers asks now for an ID (see below). When the ID is correct the menu item login changes to logout.

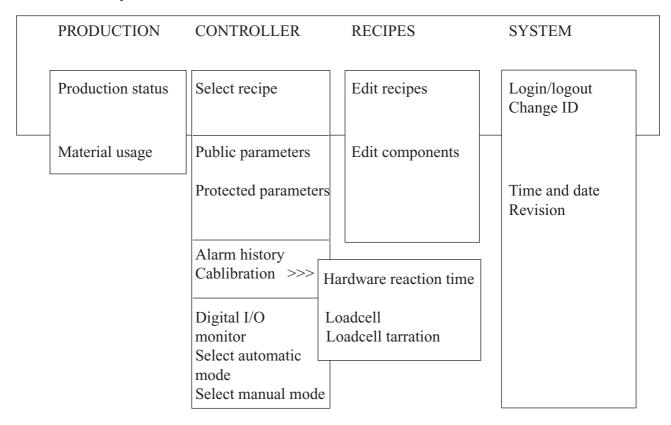
To lock the system select menu (F1) 'system / logout' the menu item changes to login again.

3.7.2 Change entrycode

To change ID chose menu (F1) 'system / change ID'.

IMPORTANT

Standard the ID is set to 1234. After it is changed the ID 1234 can't be used. There is no way to display the current ID so store the actual ID in a safe place. When you lost the new code, please contact your dealer.


3.7.3 Change date and time

Date and time of the terminal can be changed by entering menu (F1) 'system / time and date'.

3.7.4 Revision code of the system

The terminal has the possibility to display the revision and those of the connected controllers. This information can be important for system-errors when you inform the dealer. To display this information chose menu (F1) 'system / revision'

3.8 Menu hierarchy

Reference to section:

Production			
Production status	§	3.3.1	
Material usage		§	3.3.2
Controller			
Select recipe	§	2.1	
Public parameters	§ § §	3.5.1	
Protected parameters	§	3.5.2	
Alarm history		§	5.1
Calibration			
Hardware reaction time §	3.4.3		
Load cell	§	3.4.1	
Load cell tarration	§	3.4.2	
Digital I/O monitor	§ § §	3.3.3	
Select automatic mode §	2.3		
Select manual mode	§	2.3	
Recipes			
Edit recipes	§	3.2.2	
Edit components	§	3.2.1	
System			
Login/logout	§	3.7.1	
Change ID	§	3.7.2	
Time and date		§	3.7.3
Revision	§	3.7.4	

GraviMaster-FGB-M05 (S) Gravimetric Blender

Rev. May 2001

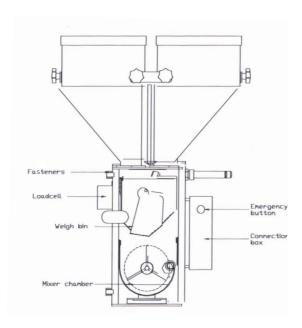
Page 39

4.0 INSTALLATION

4.1 Services

For installation 1ph or 3ph supply is required dependent on type of unit and a 1/4" air supply with a minimum 6bar.

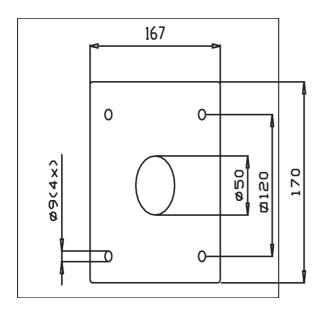
4.2 Mounting


There are several ways where to place the GraviMaster, namely

- on a frame
- on a mezzanine
- on the machine

Before mounting the unit first open the front panel and take out the mixing chamber. Make sure nothing is connected yet.

The front panel can be opened by opening the fasteners.


You can take out the mixer chamber and the weigh bin when the frontdoor is open.

4.2. Mountingplate

GraviMaster-FGB-M05 (S) Gravimetric Blender Page 40

Rev. May 2001

The foot plate of the GraviMaster should be attached on a steel attachment plate on the frame or mezzanine or flange pertinent to the machine.

The mounting holes are 9 mm and are positioned as shown in drawing 4.2

The unit should be mounted as stably as possible, in connection with the accuracy of the loadcell.

Now mixer chamber, the weighbin and the front panel can be replaced.

Connect the air pressure to the regulator (max. 12 bar). Put the plugs of the GraviMaster and the user interface in the sockets (220 V), these should be "clean", without fluctuations and it must not be drawn off a 400 V wire. Then the communication cable should be plugged into the user-interface and the control-box.

The raw material supply should be connected to the hoppers. For startup refer to section 1 of chapter 2.

5.0 Alarms

5.1 Alarm reports and solutions

The operating system sends a message to the terminal when a failure is detected. The message will be displayed and stored with date and time in the alarm history. Underneath is a list of all possible messages, with the solutions.

GraviMaster-FGB-M05 (S)

Rev. May 2001 Gravimetric Blender

ALARMS				
Alarm-message	Description	Action to cancel alarm		
Press enter	Alarm already cancelled Operator must confirm	Press enter		
No control voltage	No 24V control voltage present	Turn on the main-switch or check fuses		
Covers open	Security cover not present or mixerchamber removed	Place security-cover / mixer-chamber		
Production weight reached	producedWeight equals produktionweight	Reset the producedWeight		
No weighbin or calibrate	Zero weight of the weighbin is greater then 'maximumTareVariation'	Loadcell must be calibrated or a tare procedure must be done.		
Parameters corrupted	The controller can't read his parameters correctly. All parameters will be filled with standard values.	Check the parameters *)		
Data corrupted	The controller can't read the productiondata (production-screen). The data will be cleared.	Confirm *)		
Hopper low	The hoppersensor (optional) indicates that a hopper runs out of material.	Fill hopper with material		
Hopper empty	No material is dispensed so the controller indicates that a hopper must be empty.	Fill hopper with material and press the start-button.***)		
Loadcell not calibrated	The controller can't read the loadcell parameters correctly.	Calibrate the weighbin		
Loadcell overload	Weight of the weighbin is greater than the loadcellOverload parameter.	Remove material out of the weigbin. Check in recipe the		
Loadcell not stable	Weightsignal from the loadcell doesn't fit the band.	Press enter *)**)		
Loadcell need more samples	Controller needs more samples to generate a stable weight.	Press enter *)		
Loadcell boundary error	To much weight-samples doesn't fit the band.	Press enter *)		
Silo high	Silo supply hopper is full for several batches. (High sensor is activated)	Counter will automaticaly cleared.		
Regrind process par conflict	Given hoppernumbers doesn't contain regrind or percentage	Check the regrind control parameters		
Additive regrind par conflict	Given hoppernumber doesn't contain additive	Check the AdditiveToRegind parameters		

Page 42

- *) If this error occurs frequently contact your dealer
- **) Other problems which initiate this error are:
 - The weighbinDumpTime too short
 - Weighbin valve touches the material when mixerchamber is full

When the second problem occurs the position of the mixerchamber-sensor must be set lower. This actions affects the total production capacity of your system.

- ***) Through a too short dispense valve opening time, the machine could think that there is no material in the hopper. There are three possible reasons for this.
 - -1 dispense accuracy is too narrow
 - -2 dispense speed is too high
 - -3 number of dispense attempts is too low solutions:
 - -1 increase dispense accuracy (§ 3.5.2)
 - -2 adjust speed in recipe (§ 3.2.2)
 - -3 increase number of attempts (§ 3.5.2)

An error message on the terminal must be confirmed by pressing the <ENTER>-key. The terminal stores all error messages these can be displayed by the menu (F1) 'controller / alarm history'. This screen shows the last 256 errors and the number of times the error occurred. The error-list can de cleared by pressing (F2) option button and choose clear, with this button it is also possible to print a report of alarms, select 'print alarm history' and push <ENTER>.

[0]OPERATING AUTO[]	[]	[]						
[0]OLEKATING ACTO[]	LJ	LJ						
STATUS:[0] FGB#00: (No nam	ne) ST	ATUS OPERATING						
[ALARM HISTORY]								
No control voltage	1	Loadcell overload	0					
Covers are open	1	Loadcell not stable	0					
Production weight reached	0	Loadcell needs more samples	0					
No Weighbin / Need calibration	on 0	Loadcell boundary error	0					
Parameters are corrupted	0	Silo full error	0					
Production data corrupted	0	Silo empty error	0					
Hopper number (n) is empty	0	Conflict with regrind parameter	0					
Loadcell is not calibrated	0	Conflict with addiregr.param	0					
1 Date: 06-04-94 Time		_						
0 Date: 06-04-94 Time	: 13:14:00	Covers are open						
		77						
		<home>top of list</home>						
		<↑> scroll up						
		<↓> scroll down						
F1Menu F2Option	F3	F4Clear F5S	tart	F6Stop				
F7Pauze F8Cont.	1 3	1701001 1733	uii	Tostop				
171 daze 1 ocoiit.								

If your problems can not be solved by these directives, please contact your dealer.

6.0 MAINTENANCE AND REPAIR

Make sure ,when maintenance or repair is carried out, the power is shut off (by pulling the plugs out) and the air pressure (by disconnecting the air pressure).

6.1 Maintenance

Everything is set right and tested in the factory, adjustments should only be carried out if a part of the machine is not working correctly

Air pressure: Set air pressure to about 6 bar for best accuracy. However, lower

pressure will work. If your plant air fluctuates, set the regulator to the low end so that the dispense valves always see a consistent pressure.

Level sensor: The sensor should protrude into the mixer chamber about 1 cm past

the inside surface of the stainless mounting plate. If it protrudes too far, it will sense the mixer blades. If it does not protrude far enough, it

will sense the mounting plate itself.

Adjusting sensor sensitivity:

At the end of the sensor is a small screw, with this the sensitivity is adjustable.

step1: fill the mixer chamber until the sensor is covered.

step2: turn screw counter-clockwise until the led goes on (if the led already

is on, then turn clockwise until led goes off and proceed with step 4).

step3: turn screw clockwise until led goes off. step4: turn screw another 3/4 turn clockwise.

step5: Empty the mixer chamber and check to be sure the sensor does not

react on the mixer blades.

Weighbin dump valve: The weighbin dump valve should open and close smoothly. Two

airflow regulators are attached on the cylinder. This can be adjusted

by the screw that is on top of it.

Page 46

6.2 Replacement of parts

6.2.1 Replacement of printed circuit

For the replacement of the printed circuit of the control-box, the cover should be removed by unscrewing the bolts. unplug the connectors which are attached to the printed circuit. Now unscrew all M3 bolts and remove the circuit. It is important to first disconnect the connectors and then unscrew the bolts. attach the new printed circuit in the same way, but in reverse.

It is wise to use a wrist band with ground cord which is connected with earth (PE). This because of the of static electricity.

6.3 Cleaning the machine

The frequency of cleaning will depend on the number of times the raw material is changed.

For cleaning the machine the front panel, the mixer chamber, the weighbin and the mixer should be removed (as described in section 4.2). **Disconnect the electrical power and air supply.**

Clean the machine by using air pressure. <u>Use safety-goggles when cleaning.</u> After it has been cleaned, put it back together in the reverse way of stripping it.

6.4 Transportation of the GraviMaster

The weigh bin should be removed, before moving the GraviMaster, this can be done as described in the previous section. The weigh bin should be removed to prevent damaging the loadcell. The machine can now be transported on a firm pallet.

7.0 TECHNICAL INFORMATION

7.1 General machine specifications

Connecting voltage : 1-phase 240 V

Communication cable : Fiber optic cable (or RS–422)

Air pressure : max. connecting pressure: 12 bar (+/- 170 psi)

working pressure: 4-6 bar (+/- 57-86 psi)

Sound level : < 70 dB (A)Surroundings temperature : $-18^{\circ}\text{C to } +50^{\circ}\text{C}$

Batch weight : 0,5 kg Machine weight : 25 kg

Machine dimensions : 450 x 450 x 640 mm

7.1.1 Safety measures

The GraviMaster is secured by 1 safety switch, which is positioned on the frontdoor. When the frontdoor is opened, the machine will stop.

7.2 User-interface specifications

Connecting voltage: 240 V

Printer connection : Parallel port

7.3 Valves specifications

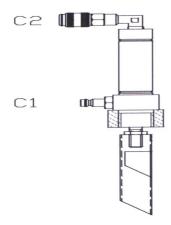
The machine is supplied with valves from the brand MAC, type 45A-SC1-DDAJ-1KJ. The number of valves is similar to the number of hoppers + 1 for the weighbin + 1 for the mixer chamber valve (optional).

The connection: (drawing 7 and 7.1) The valve of the weighbin is sealed at W1, so

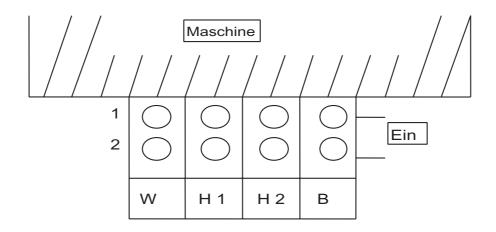
connection on W2 is the only possibility. Connecting dispenser valves

H1 and H2 is as follows;

* H1-1 onto C1, as H2-1 onto C1 etc.


* H1-2 onto C2, as H2-2 onto C2 etc.

H1-1 and H1-2 should be connected to the cylinder under hopper 1,


H2-1 and H2-2 to the one under hopper 2 etc.

If there is a mixer chamber valve, it should be connected to B-1 and B-2, one of the lines is numbered, like one side of the cylinder.

Connect the concordant ones.

Drawing 7.1 Cylinder

W= Wiegeschalenanschluss

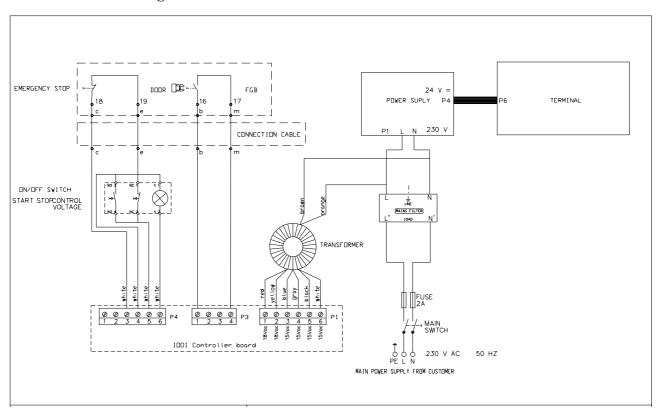
H1= Dosierschieber 1

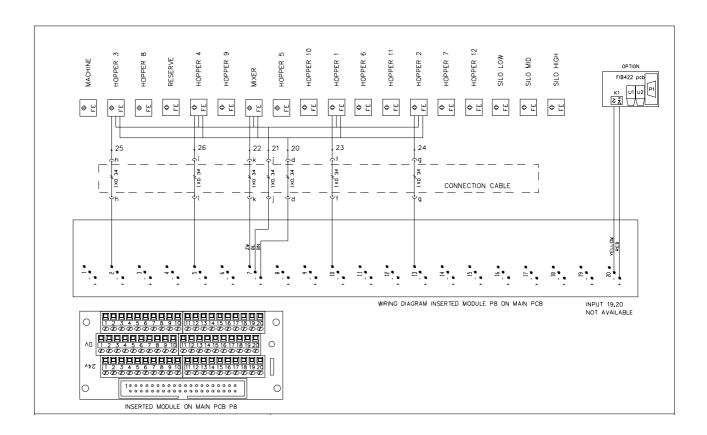
H2= Dosierschieber 2

B= Mischkammerschieber

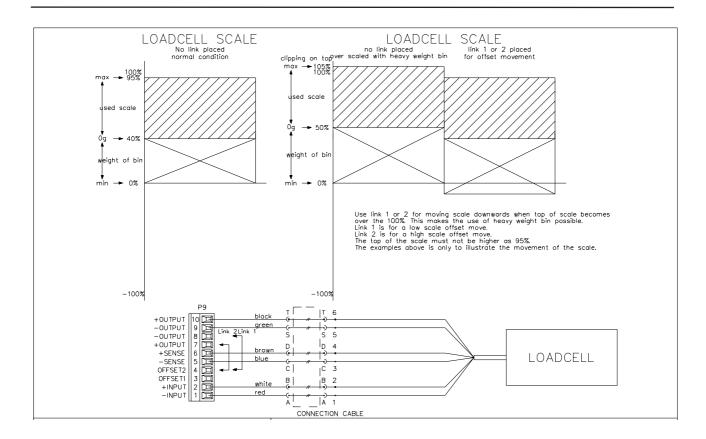
(Option)

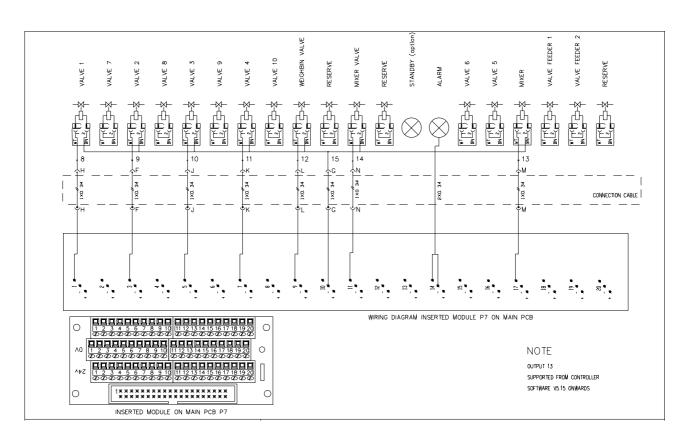
Drawing 7.2 Topview valves


7.4 Air pressure cylinders specifications

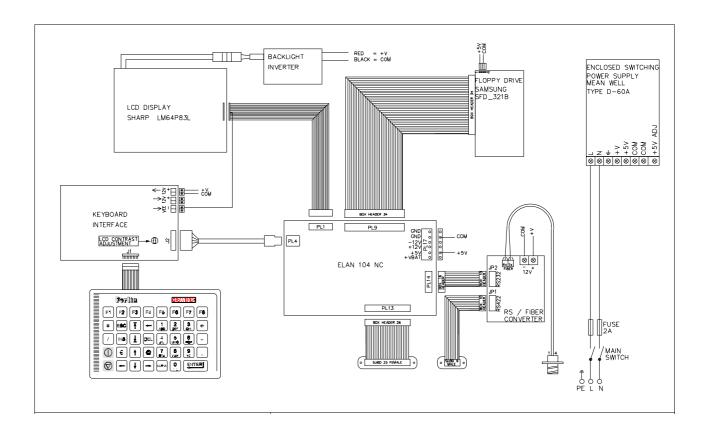

See specifications on cylinder.

Page 49


7.5 Electrical diagrams



Page 50



Page 51

```
LOADCELL RED
                              © 2 ©
© 3 ©
                  В
                                                    LOADCELL WHITE
                  С
                                                    LOADCELL BLUE
                             0 4 0
0 5 0
0 6 0
0 7 0
0 8 0
                  D
                                                    LOADCELL BROWN
                                                    LOADCELL GREEN
                  S
                                                    LOADCELL BLACK
                                                    LOADCELL GROUND (wit/geel)
                  U
                                                   VALVE 1 ( grijs )
VALVE 2 ( geel )
VALVE 3 ( roze )
VALVE 4 ( rood )
                  Н
                  F
                              0 9
                                        0
                              ○ 10○ 11○
                             0 12 0
0 13 0
0 14 0
0 15 0
0 15 0
                                                   WEIGHTBIN VALVE ( zwart )
MIXER ( paars )
MIXER VALVE * ( roze/grijs )
VALVE — ( blauw )
VALVE —
                  L
M
                 Ν
                 G
   VALVE -
   VALVE
                                                    VALVE -
   VALVE
                                                    VALVE -
                             - 0 15 0
0 16 0
0 17 0
18 0
0 19 0
0 20 0
0 20 0
0 21 0
0 21 0
0 22 0
0 23 0
                                                   VALVE -
DOOR SWITCH ( blauw/rood )
DOOR SWITCH ( bruin /groen )
EMERGENCY SWITCH ( wit/groen )
EMERGENCY SWITCH ( roze/bruin )
SENSOR + ( bruin/grijs )
SENSOR + **
                  b
                 m
                  С
                  е
                  d
SENSOR
                                                    SENSOR + *
SENSOR - ( bruin )
SENSOR - *
SENSOR
SENSOR
                                                    SENSOR - *
SENSOR
                                                   SENSOR - *
SENSOR MIXER ( roze/wit )
SENSOR HOPPER 1 * ( wit )
SENSOR HOPPER 2 * ( groen )
SENSOR HOPPER 3 * ( wit / geel )
SENSOR HOPPER 4 * ( geel/bruin )
SENSOR MACHINE * ( wit/grijs )
                              24 25 26 
                  g
                                                                                                                                                                 * OPTIONS
                  а
```

